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I. Introduction. 

When describing the systems, irrespective of specific peculiarities of the case 
being considered and the concrete situation, we imagine them as a multitude of 
interrelated constituents, aspects, parameters, processes, stages, developments, etc. 
affecting each other. Let us call these component parts system «constituents». The 
systemic approach means that the investigated «object» is considered as a single whole 
where every «constituent» interacts with the other ones affecting them and being liable 
to the reciprocal direct or indirect impact. This interaction may be in a form of 
instantaneous impact of the system «constituents» on each other, and then the relevant 
interdependence is described by algebraic or differential equations. However, if there is 
a time delay between the impact of one «constituent» on the other and the feedback to 
the impact, then the interdependence is described by difference equations.  

Thus the presence of feedbacks between the system «constituents» is described 
using a system of ordinary or (and) difference algebraic or (and) differential equations. 
We can assert the opposite as well: 

If the system dynamics equations contain the parameters relating to different 
«constituents» systems, then the availability of such mathematical dependencies implies 
the existence of feedback between these «constituents».  

The way of description of systems offered below may be referred to the class of 
«system dynamics» models, as the principal parameters are interrelated by the system of 
differential equations. However, our approach has one distinction from the usually 
considered models of this category. The distinction is as follows: the introduced 
parameters characterizing the system development are not the values to be directly 
observed. They may be regarded as indicators generally describing the key line and the 
tendencies of development of the system on the whole. Our approach may be called an 
abstract approach, for it may be applied for the most systems arising spontaneously in 
nature and in the society, irrespective of any specific features of their structure. In terms 
of this approach the feedback between the «constituents» of a particular system is 
mathematically expressed as a congruence of definitional domains of abstract values 
and interrelation of these values by differential equations. These values, being abstract 
indicators of the state of the system being considered, were designated as the 
«potential» and the «conditions of realization».  

Talking of the state of a system one often uses the terms: “system potential” and 
“conditions of realization (or release!) of this potential”. Analyzing, for example, the 
specific features of dynamics of different systems, one often states that “the potential” 
of a particular system is greater than of some other one, or one compares the “conditions 
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for release of the potential” in different systems. This way one assumes implicitly that: 
1) “the potential” and “the conditions” may be regarded as some numerical values 2) 
these values characterize the state of system at the utmost abstract level 3) these values 
may be obtained by some procedure of system information processing. 

A question arises: is it possible to build a model of system development on the 
basis of exclusively of these two abstract values? This is what we have tried to do in this 
paper. We are not aware if such attempts have been made before. Our object was to 
reveal such peculiarities of system dynamics that can be found at this very abstract level 
of description. 

It is known that the terms “potential” and “conditions of realization” are the 
categories of dialectical logic and are connected with each other by a complicated 
system of interrelations [2], [4]. We have tried to describe this logical interrelation using 
the mathematical methods. Here we have postulated a number of assumptions that 
express the sense of the offered terms. 

Statement 1. Let F  be “potential”, U - “conditions for realization”, 
{ }Nqqq ,...,, 21 - a set of registered system parameters that affect the abstract values F  
and U . Proceeding from the sense of the terms introduced, any change in the 
“conditions of realization” entails the change of the system “potential”, that is, the 
values F  and U  are interrelated. There cannot be a situation when one of the values 
changes, while the other stays as it was. This interrelation of the values F  and U  
means that no parameters exist that would affect only one value ( F  or U ). These 
logical assumptions can be formalized in the form of the following statement: 

 The abstract values F  and U  are the functions of parameters { }Nqqq ,...,, 21 :  
( )NqqqUU ,...,, 21= ; ( )NqqqFF ,...,, 21= .     (A) 

The congruence of the definitional domain of these functions is the 
mathematical expression of interdependence of the respective terms. 

Statement 2. The registered parameters are the system data we have. For 
example, considering “a company” as a certain system we single out such parameters of 
this system as “the number of workers”, “the company’s assets”, “the volume of 
operations”, “the dept to other companies”, etc. Each of these parameters somehow 
influences the values of  “the conditions” and “the potential”. This influence may be 
positive if the parameter growth results in the growth of F  and (or) U , however it may 
be negative if the parameter growth is accompanied by the decrease of F  and (or) U . 
In the above example the company’s “potential” grows with the growth of the 
“company’s assets”, but the increase in the “amount of dept” lowers this “potential”. Let 
us pose a question: does the growth of “assets” always mean the increase in the 
“potential”, and the growth of “dept” –  its reduction? We are apt to answer this question 
positively: yes, it is always so, with the exclusion of several non-standard situations. 
The same is true fore the other parameters – each of them affects the values F  and U  
in quite certain way, expands or reduces them.  

The mathematical expression of this fact is the monotony of functions 
( )NqqqUU ,...,, 21=  and ( )NqqqFF ,...,, 21=  for each argument.   (B) 

Statement 3. The function of “potential” may be performed by any function of 
registered parameters that shows correctly the character of effect of these parameters on 
the “potential” value. Let us consider the space of these registered parameters 
{ }Nqqq ,...,, 21 . The surfaces of the fixed “potential” (“equipotential surfaces”) are set by 
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equations ( ) ConstqqqF N =,...,, 21  in it.  These equations express mathematically the 
way of affecting the “potential” value by particular parameters. They describe the 
mechanism, which makes the effect of one parameter be compensated by the effect of 
another one, having the potential value constant. That is why the equation 

( ) ConstqqqF N =,...,, 21  demonstrates the manner of connection of abstract value F  
with the registered system parameters. However, the numerical value of F  as such may 
be different. It is just important for it to be the same for all the points of surface 

( ) ConstqqqF N =,...,, 21 . Let ( )Nq,...,q,qF 21  be a function showing correctly the 
impact of the registrated parameters on the “potential” value. Then every non-
decreasing function ( )FΨ  will have the same property. For that reason the choice of 
function, which is mathematical expression of «potential», is not ambiguous. 

It means that the shift from the registered system parameters to the abstract 
value F  is specified only to within the functional transformation ( )FF Ψ⇒ , where 

( )FΨ  is an arbitrary non-decreasing function of F .     (C) 

This ambiguity lets us choose the function ( )Nq,...,q,qF 21  so as to simplify the 
type of functional dependence to the maximum extent. Let us consider, for example, a 
system described by parameters 1q  and 2q . Let the system “potential” be a strictly 
increasing function of these parameters. It is supposed that the impact (on the 
“potential” value) caused by decrease of one parameter twofold may be compensated by 
the increase of the other one threefold. It is evident that any non-decreasing function of 
argument 2

21
3logqqQ ⋅≡  as a “potential” may be taken. It might be, as an example, the 

function nQ  ( 0>n ) or Qa  ( 0>a ). However, it is more convenient to use the simplest 
version of functional dependence, being function ( ) QQF =  in this example. The choice 
is arbitrary and is accounted for by the considerations of simplication of calculations.  

After we have identified the type of function ( )Nq,...,q,qF 21 , we just have to 
determine what kind of «potential” we consider to be singular. The linear 
transformation does not change the type of functional dependence. Let us choose the 
linear transformation ( ) FF ⋅µ=Ψ  so as 1...21 ==== Nqqq  “potential” were equal to 

a unity: ( ) ( ) ( ) 1111111 2121 ====⋅µ≡Ψ≡=== NN q;...;q;qFFq;...;q;qF~ . This 
way we shall identify the unit of measurement for the “potential”.  

The “conditions” and the “potential” are interrelated and, as will be shown 
below, this ratio is mathematically described by the system of differential equations. 
Thus, by defining the form of functional dependence and “potential’s” unit of 
measurement, we determine the form of functional dependence and unit of measurement 
for the “conditions”. This means that the condition ( ) 11,...,1,1 21 ==== NqqqF , by 
which we remove the ambiguity of “potential’s” function choice, is also a condition for 
the unequivocal choice of “conditions” function. 

Statement 4. Let us introduce a new important term. Let us consider that 
depending on the number of “conditions” existing at that moment the system “potential” 
is realized either in full or in part. The realizable in a unit of time portion of the 
“potential” will be denoted as F R . 

The following ratio will be called “the realization ratio”: 
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k
F

F

R= .         (1) 

We should make some comments to this definition. We shall designate the 
system “potential” release process as the “activity”. The “activity is the way of 
manifestation and the form of existence of the realizable “potential”. The realizable 
“potential” shows itself through the “activity” and exists only in the process of 
“activity”. We judge of the value of realizable “potential” by the extent of its 
manifestation through the “activity”. For example, the “enterprise activity” is a process 
of useful functioning of all of its component sections and is formed of the workers’ 
“labor activity”, the efficient operation of production facilities, the “managerial activity” 
on the part of administration, etc. The “activity” may be more or less intensive, 
depending on the “conditions” of its efficient realization. This enables us to specify the 
sense of the definition (1). The “realization ratio” shows which portion of the potential 
activity is represented by its realized part. If we define the “activity realized during the 
time t∆ ” as ( )tAR ∆ , and the maximum possible “activity” that could be realized during 
this time as ( )tA ∆ , then the “realization ratio” is as follows: 

( )
( )tA

tA
limk R

t ∆
∆

=
→∆ 0

.        (1*) 

The formulas (1) and (1*) are congruent in case of 
( )
t

tA
limF R

t
R ∆

∆
=

→∆ 0
 and 

( )
t

tA
limF
t ∆

∆
=

→∆ 0
. For that reason the “potential” may be defined as the intensity of the 

“activity” or, which is the same, as the amount of «activity” that is realized ( RF ) or may 
be realized ( F ) in a unit of time.  

Proceeding from the sense of the terms introduced we shall postulate that “the 
realization ratio” is a function of “potential” and “conditions”.  

That is, the dependence of “realization ratio” on the parameters { }Nqqq ,...,, 21  
is expressed in the form: 

( ) ( ) ( )( )NNN qqqFqqqUkqqqk ,...,,,,...,,,...,, 212121 = .    (D) 

We shall postulate also the following properties of this function that reflect the 
logical interrelation of the terms earlier introduced: 

1. There is an “optimal” number of “conditions” for any value of “potential”, 
where the full realization of the system “potential” is achieved. That is, 

( )∀ ∃ =F U k F U, : ,0 0 1 .       (1.1) 
2. The greater the “potential” the more “conditions” are needed for its full 

realization, that is, ( )FU0  - is a strictly increasing function.    (1.2) 
3. Having 0UU ≠ ; ( ) 1,0 << FUk .      (1.3) 
4. Having 0→U ; 0),( →FUk , as nonzero “conditions” are necessary for the 

realization of system “potential”.        (1.4) 
5. If the number of “conditions” is over the “optimal” 0U , then the system 

“potential” is realized only in part. Having ∞→U ; ( ) mFUk →, ; where m  - then the 
least limit value that takes up the “realization ratio” in case of excess of available 
conditions.          (1.5) 
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Statement 5. The “potential” dynamics is governed by the following 
peculiarities: 

The process of realization of “potential” results in the growth of those 
potentialities of the system that are being realized in this process and in decrease of all 
the other non-realized potentialities.       (E) 

This law governs, for example, the abilities of living creatures: the abilities that 
are used grow with time, while; the abilities that are not exploited get atrophied. 
Another example: a company that functions grows and develops, while the company 
that has been stopped gets ruined. This principle reflects the very essence of life: only 
this thing grows that was able (took efforts) to grow. 

Let us introduce the follow denotations: 

( )
t

U
lim

dt

dU
tU

t ∆
∆

=≡
→∆ 0

& ; ( )
t

F
lim

dt

dF
tF

t ∆
∆

=≡
→∆ 0

& . 

Let F∆  be the change of value of “potential” during t∆ . This value consists of 
increment of realizable potencies +∆F  and diminution of unrealizable potencies −∆F . 
Let us denote the momentary increment (in a unit of time) of realizable potencies of a 

system 
t

F
limF
t ∆

∆
≡ +

→∆+ 0
& , and the momentary diminution (in a unit of time) of 

unrealizable potencies as 
t

F
limF
t ∆

∆
≡ −

→∆− 0
&  (both values are positive!). Then the complete 

change of value of ”potential” in a unit of time is equal: 

−+ −= FFF &&&          (2) 
It is evident that the more potencies we can realize the greater “potential” 

increment will be, that is the value &F +  is a strictly increasing function of the realizable 
“potential” value. And on the contrary, the greater is the unrealized portion of the 
“potential” the greater is the diminution of unrealized “potencies” &F − . Let us limit 
ourselves to the consideration of a simplest case of linear strictly increasing functions: 

( )RFF+
&  and ( )RFFF −−

& .  

( )&F F F FR R D R= ⋅ − ⋅ −γ γ ;       (3) 
0>Rγ  ; 0>Dγ .        (4) 

Let Da γ≡ ; 
D

Rb
γ
γ

+≡1 .       (5) 

Placing (1) in (3) we shall obtain the key equation of “potential” dynamics as 
a linear approximation: 

( )( )& ,F a b k U F F= ⋅ ⋅ − ⋅1 .       (6) 

Statement 6. The number of “conditions” changes due to two reasons: 
1) The “potential” realization process is a process of consumption of available 

“conditions” and creation of new ones.  

2) If the “potential” of a system is not realized the number of “conditions” 
available in the system decreases.       (F) 

The latter assumption is connected with the universal physical principle of 
growth of entropy of systems in which only natural mechanisms are in force. The 
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growth of entropy, as is well known, illustrates the process of digression of the level of 
organization and orderliness of the system left on its own. This way, as an example, the 
abandoned houses decay and collapse, the fields not cultivated get overgrown with 
weeds, etc. 

Let U∆  be the change of value of “conditions” during t∆ . This value consists 
of two parts: the change due to the process of realization (“creation” minus 
“consumption”: −+ ∆−∆ UU ) and the change due to the growth of the system entropy.  

Let us consider the first part. The more is the “potential” system realizable in a 
unit of time the obviously greater is the momentary increment of “conditions” in a unit 

of time (
t

U
limU
t ∆

∆
≡ +

→∆+ 0
& ) and their expenditure (

t

U
limU
t ∆

∆
≡ −

→∆− 0
& ). Assuming the 

linearity of interrelations again, we shall derive the first part of the “condition 
equation”: 

 ( ) FFUkFyFxUUU RR ⋅⋅=⋅−⋅=−= −+Ι ,ν&&& ;    (7) 
ν = −x y ;         (8) 

0>x ; 0>y .         (8.1) 
The second part of the “conditions equation” describes the decrease in the 

number of “conditions” due to natural processes of the system disorganization. The 
more is the available number of “conditions” the more is their loss in a unit of time. 
Being restricted again by simplest case of linear dependence, we get the following: 

UU ⋅−=Ι Ι λ& ;          (9) 
0>λ .          (9.1) 

Adding (7) and (9) we get to the “conditions” dynamics equation as a linear 
approximation: 

( ) UFFUkU ⋅−⋅⋅= λν ,&        (10) 

Equations (6) and (10) describe the evolution of the system as a process of 
changing its “potential” and “conditions of realization”. Let us call them the “evolution 
equations”. These represent non-linear first-order differential equations, which include 
the unknown subsidiary function – “realization ratio” that has some known functional 
properties (1.1) -(1.5). This function shows the specific reaction of the system to the lack 
or abundance of “conditions” in it. Due to the presence of the unknown function in the 
“evolution equations” it is impossible to get a strict analytical solution of this system of 
equations. However, knowing the functional properties of this function, it is possible to 
analyze the characteristic features of the solutions qualitatively. The analysis results in a 
number of interesting conclusions: 

1. It follows from the equations (6) and (10) that the “realization ratio” does not 
depend on the choice of measurement units for abstract values F  and U . Let us 
consider the “scaling” transformation of functions F  and U  ( FF ⋅µ⇒ ; UU ⋅µ⇒ ), 
describing the change of unit of measurement for the “potential” and the “conditions”. 
Here the left portions of the equations (6) and (10) are transformed in the following 
obvious way: FF && ⋅µ⇒  è UU && ⋅µ⇒ , which would only be possible if the “realization 
ratio” does not depend on µ .  

This means that the “realization ratio” is a function of “conditions to potential 

ratio”: ( ) ( )Yk
F
U

kF,Uk ≡





≡ .        (G) 
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2. We may build a classification of possible “options of development” of 
system. The classification shows the character of change of (growth or diminution) of 
the three basic factors of the system: “potential”, “conditions” and “conditions to 
potential ratio”. 1) The increase or decrease of the “potential” evidences the “progress” 
or “regress” in the system development. 2) The increase or decrease of the 
“conditions” characterizes the “effectivity” of development (the development is 
“efficient” if the “potential system” realization does not result in decrease of 
“conditions” in it). 3) Finally, the “conditions to potential ratio” characterizes the extent 
of available of “conditions” for the “potential” (quantity “conditions” per the unit 
“potential”). If this value does not diminish we talk about the “intensive  
development”. Thus, for example, the development with the growing “potential” and 
“conditions”, though with decrescent ratio of the second aspect to the first one, is 
classified as an “effective extensive progress”. In this classification 6 options of system 
dynamics are possible. The “effective extensive regress” as well as “ineffective 
intensive progress” is not possible due to mathematical conjunction of indices 
underlying the classification. The classification of “development options” is given in 
Table 1. 

3. Equation (6) and (10) include numerical parameters λν ;;;ba  characterizing 
abstract properties of the system. The analysis of the equations shows that, having the 
same values of these parameters, different versions of development of the system are 
possible, as a rule. In other words, setting the parameters of a system is not equal to 
identifying the peculiarities of its dynamics. The particular “option of development” 
depends on the “conditions to potential ratio” at the start time. One and the same system 
may develop according to the “effective progress” option or “ineffective regress” option 
depending on the extent of availability of proper “conditions” for the “potential” at the 
start time. 

4. Depending on the observance of a number of correlations between the 
parameters λν;;;ba  and m  (1.5.) and the choice of function ( )F,Uk , all the systems 
may be divided into groups (or types) with identical factors (properties) of development. 
The classification of systems built on the basis of such division is discussed in Cl.IV. 
Figures 8.1-8.9 illustrate some interesting peculiarities of development of the different 
types of system. 

5. We may introduce the notion of “area of development” as an area of 
admissible values of “conditions to potential ratio”. Thus we can see that normally 
several “areas of development” exist for every type of system and the system will 
develop within the “area” where it was at the start time. This means that availability of 
proper “conditions” for the “potential” will be confined by the limit values for this “area 
of development”. 

6. Let us consider the follow simple example. Let 1q  and 2q  are parameters of 
“constituents” of particular system. Let us consider the case of interaction of 
“constituents” in a form of instantaneous impact of this «constituents» on each other.  
The existence of such feedback between these «constituents» means that:  

1) relations ( )p;qQq
r

211 =  and ( )p;qQq
r

122 =  exist ( p
r  is the vector of the 

other parameters of system); 
2) functions ( )( ) ( )111211 qQ

~
p;p;qQQq == rr  and ( )( ) ( )222122 qQ

~
p;p;qQQq == rr   

are not identities.   
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Let interrelation ( )FU Φ=  is deduced on the basis of equations (6) and (10). 
Let us relation ( )U;qQq 211 =  is deduced on the basis of dependence ( )21 q,qUU =  and 
relation ( )F;qQq 122 =  is deduced on the basis of dependence ( )21 q,qFF = . If the 
functions ( )21 q;qU  and ( ) ( )( )2121 q;qFq;qU

~ Φ≡  are different functions then formulas 
( )( )U;F;qQQq 1211 =  and ( )( )F;U;qQQq 2122 =  are not identities and consequently 

feedback between the «constituents» of system exist.  
In generally, in terms of our approach the feedback between the «constituents» 

iq  and kq of a particular system is mathematically expressed by means of the follow 
two statements:  

1) abstract values U  and F  are functions of parameters iq  and kq ; 

2) determinant of Yakobi’ matrix: 



















∂
∂

∂
∂

∂
∂

∂
∂

ki

ki

q
F

q
F

q
U

q
U

  does not equal to zero. 

These, as well as many other interesting peculiarities of system dynamics may 
be conveniently illustrated using the charts depicting the possible “options of system 
development” in the form of directed curves within the parameter plane ( )U F,  
(“potential” (abscissa axis) – “conditions” (ordinate axis)). The development of the 
system is shown as a curve ( )U t F t( ) , ( )  (“evolution curves”) with each point 
corresponding to the state of the system at a particular moment of time (for example 
Fig. 8.1-8.9). 

II. The analysis of solutions of “evolution equations”. 

Let us introduce: 

F

U
y ≡  .         (11) 

Using statement (F) and “evolution equations” (6) and (10), we get the 
following equation relative to variable y : 

( ) ( )λ−+





⋅−ν⋅=−≡ aba

y
yk

F
F

U
U

y
y &&&

.     (12) 

Solution of this equation is following: 

( )
( ) taConst

yyk
a

aby
dy

⋅λ−+=
+⋅








λ−

−ν∫ 1 .     (13) 

The equations for functions ( )yU  è ( )yF  may be integrated like this: 

( )

( )

( ) ( ) ( )∫ ⋅λ−+⋅−ν

⋅







λ−⋅ν

=+
yaykaby

dy
y

yk

ConstyLnU 2 ;    (14) 
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( ) ( )[ ]
( ) ( ) ( )∫ ⋅λ−+⋅−ν

⋅⋅−⋅
=+

yaykaby
dyaykb

ConstyLnF
1

2 .    (15) 

The constant present in the formulas (14) and (15) is identified by the initial 
“state” of the system. 

Let us introduce the following subsidiary functions: 

( ) ( ) ( ) ( ) yaykabyyPY ⋅λ−+⋅−ν≡ ;      (16) 

( ) ( ) 1−⋅≡ ykbyPF ;        (17) 

( ) ( )
λ−⋅ν≡

y
yk

yPU .        (18) 

Using these functions, we can rewrite “evolution equations” and (12) as: 

( ) FyPaF F ⋅⋅=& ;        (6.1) 

( ) UyPU U ⋅=& ;        (10.1) 

( )yPy Y=& .         (12.1) 

It is obviously that functions ( )tF&  and ( )yPF , ( )tU&  and ( )yPU , ( )ty&  and ( )yPY  
have similar (positive or negative) sign. 

It is not difficult to see that: 

( ) ( ) ( )( )yPayPyyP FUY ⋅−⋅≡ .      (19) 

If 0→y , then ( ) ( ) ( )0kayPayP FU ′⋅ν+λ−→⋅− . 

Then solution (13) – (15) can be represented in the following form: 

( )
( ) ( ) taConst
yP

dya

Y

⋅λ−+=⋅λ−
∫ 1       (20) 

( ) ( )
( )∫

⋅⋅
=+

yP

dyyP
ConstyLnU

Y

U
2       (21) 

( ) ( )
( )∫

⋅⋅
=+

yP

dyayP
ConstyLnF

Y

F
2       (22) 

As can be seen from equation (20), if ±∞→t , then )i(
Yyy → , where )i(

Yy  is the 
root of equation: ( ) ( ) ( )( ) 0=⋅−⋅≡ yPayPyyP FUY .      (23) 

If ( ) ( ) ∞≠′≡′
→

yklimk
y 0

0 , then 0=y  is the root of equation (23). The remaining 

roots of the equation (23) comply with the ratio: 

 ( ) ( )
ν

λ
−

⋅−
=

aby
ya

yk         (24) 

Let  )M(
Y

)(
Y

)(
Y

)(
Y y..yyy <<<<= 210 0  are roots of equation (23) and let ( )0y  is 

a ratio of quantity of «conditions” to value of “potential” at a start moment of time. It 
follows from the equation (20) that the whole “history” of system development takes 
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place inside the domain: )i(
Y

)i(
Y yyy <<−1 , where )i(

Yy 1−  and )i(
Yy  are two roots of 

equation (23) being “the closest” to value ( )0y : ( ) )i(
Y

)i(
Y yyy <<− 01 . We denoted the 

domains )i(
Y

)i(
Y yyy <<−1 ; M,...,,i 21=  as the “areas of development” (Fig.5). Each 

“area of development” has a corresponding portion of plane ( )U F, , restricted by 

straight lines ( ) FyFU )i(
Yi ⋅= −

−
1

1  and ( ) FyFU )i(
Yi ⋅= . As far as the “areas of 

development” are domains of term-constancy of function ( )yPY , the character of 
monotony of function ( )ty  within the “area of development” cannot change (formula 
(12.1)): the function ( )ty  either grows or diminishes. So the “evolution curves” 

( )U t F t( ) , ( )  of every “area of development” are directed from one right line to the 

other: either from ( ) FyFU )i(
Yi ⋅= −

−
1

1  to ( ) FyFU )i(
Yi ⋅=  or vice versa. In the first case 

the ratio of the number of “conditions” to the “potential” value grows tending to 
approach the limit value )i(

Yy , and in the second case it diminishes tending to approach 

the limit value )i(
Yy 1−  (Fig.6-7). 

Each “evolution curve” is a solution of “evolution equations” (6), (10). The 
“area of development” of system coincides with the “area of development” in which the 
system was at the start time. As the solution of “evolution equations” (20) – (22)  
depends only on the variable y  and the system parameters λν ;;;ba , the solutions 
pertaining to one and the same “area of development” are different only by the some 
multiplier whose value depends on the difference of original values U  and F  and (or) 
the shift of the countdown startup. The characteristic peculiarities of solutions for one 
and the same “area of development” are identical.  

According to (6.1), (10.1), (12.1) the following is congruent for all solutions 
within one “area of development”: 1) zeros of functions ( )tF&  and ( )tU&  (or ( )YPF  and 

( )YPU ); 2) domains of term-constancy of these functions. 

This enables us to introduce the notion of “option of development” as a totality 
of functions ( )tU , ( )tF  and ( )ty  monotony properties. 

 Each “option of development” is characterized by signs of three values: ( )tY& , 

( )tU&  and ( )tF& . 
Let us denote the following designations. The “area of development” being 

considered will be denoted as iΩ  ( )i(
Y

)i(
Y yyy <<−1 ), the totality of “areas of 

development” will be denoted as { }M;...;ΩΩ=Ω 1 , the “option of development” with 
growing functions ( )ty , ( )tU  and ( )tF  will be denoted as ↑↑↑↑↑↑ Ξ≡Ξ F;U;Y  (Y  is the 

first, U  is the second, and F  is the third index in the all formulas of this paper). The 
history of system’s evolution may have several stages, each having its own specific 
“option of development”. 

For detailed description of the system evolution it is necessary to specify the 
“area of development” and the aggregate of “options of development”, corresponding 
to the stages of evolution. 

Say, the evolution consisting of two stages where at the first stage ( )tU , ( )tF  
and ( )ty  increase, and at the second stage ( )tU  and ( )ty  increase, while ( )tF  
decreases, is described by a set consisting of two “options”: ↑↑↑Ξ  and ↑↑↓Ξ .  
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The “type of evolution” is prescribed by specifying the “area of development” 
and the ordered set of “options of development” for the given “domain”. 

Let us consider in more detail the mathematical conditions that determine the 
“area of development” of a system. These are the conditions of function ( )yPY  term-
constancy.  

If ( ) 0>yPY , then the evolution curves of respective “area of development” 
comprise “options of development” with increasing function ( )ty : ↑↑↑Ξ ; ↑↑↓Ξ  and 

↑↓↓Ξ . Evolution curves are directed “counter-clockwise” if we proceed from the plane 

coordinates ( )U F,  origin (Fig.5). 
If ( ) 0<yPY , then function ( )ty  decrease and the evolution curves are directed 

«clockwise” (Fig.5). In this case the development may take place as three “options”: 

↓↓↑Ξ ; ↓↓↓Ξ ; ↓↑↑Ξ .  

The “options of development” ↑↓↑Ξ ; ↓↑↓Ξ  are impossible due to identity: 

F
F

U
U

y
y &&&

−≡ . 

For that reason there are exactly 6 “options of development”: 
↑↑↑Ξ ; ↑↑↓Ξ ; 

↑↓↓Ξ ; ↓↓↑Ξ ; ↓↓↓Ξ ; ↓↑↑Ξ . Classification of these basic “options” is represented in 
Table 1. 

The plane ( )U F,  is spit into several “areas of development”, with each having a 
specific sign (positive or negative) of function ( )yPY . The “areas” having one common 
border have different respective function ( )yPY  signs. In the “areas” ( ) 0>yPY  the 
evolution curves are aimed at the top border of the “area”, in the “areas” ( ) 0<yPY  - 
they are directed to the bottom border of the “area”. For that reason the “area” borders 
are the lines to which the evolution curves tend to converge or from which they 
disperse. In the “areas” ( ) 0>yPY  the top border is the “line of convergence” of 
evolution curves, while the bottom border is the “line of dispersion” (Fig.7). With time 
all the evolution curves line up along the “convergence lines”, that is, along certain 
directions of the plane ( )U F, . The “convergence lines” and “dispersion lines” alternate. 
Each line is prescribed a certain value y . The value ( )tylimy

t +∞→∞+ ≡  - is the value y  for 

the “convergence lines”, while the value ( )tylimy
t −∞→∞− ≡  - is the value y  for 

“dispersion lines” of evolution curves.  
The set of systems having the different values y  at start time transforms during 

the time into the set of systems having only some certain values y . Consequently the 

initial disordered distribution of systems on the plane ( )U F,  transforms into the 
ordered distribution of systems on several groups with certain values y . We can 
consider this property of evolution as one from many possible form of creation of order 
out chaos. The problem of self-organization of systems in evolution process is broadly 
discussed in modern literature (see for example, [3], [5]-[8], [11]). Our approach allows 
connecting self-organization with universal principles of evolution. 

The values y  possible for every “area” are in accord with one of the 
inequations: 1) ∞+∞− << yyy  for “areas” ( ) 0>yPY  and 2) ∞−∞+ << yyy  for “areas” 
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( ) 0<yPY . The “areas” of the first type will be denoted as +Ω , and the “areas” of the 
second time as −Ω . The limit values ∞−y  and ∞+y  for these “areas” will be denoted as 

( )+
∞− Ωy ; ( )−

∞− Ωy ; ( )+
∞+ Ωy ; ( )−

∞+ Ωy . The “areas” having the common border are, 
probably, the “areas” of different types: +Ω  and −Ω . It is not hard to see that for the 
bordering “areas” one of the equations holds true: 1) either ( ) ( )−

∞−
+

∞− Ω≡Ω yy ; 2) or 
( ) ( )−

∞+
+

∞+ Ω≡Ω yy . In the first case the border is a “dispersion line”, in the second case 
it is the “convergence line” of evolution curves. We may formulate a simple rule setting 
the “status” of the border.  

The top border of “areas” −Ω  is the “dispersion line”, the bottom border is the 
“line of convergence”. And contrary for the “areas” +Ω . 

Let { }M;...;ΩΩ=Ω 1  be a set of “areas of development” for a system. Two 
options of alternating of function ( )yPY  relators (signs) are possible: 1) 

( ){ }M

M
I ;...; 1

1
−− ΩΩ=Ω  and 2) ( ){ }11

1
+−+ ΩΩ=Ω

M

M
II ;...; . In the first case the inequation 

( ) 00 <′⋅ν+λ− ka  takes place. In the second case the term of inequality is reversed. 

The borders of “areas of development” are roots of equation: 

( ) ( ) ( )( ) ( ) ( ) ( ) 0=⋅−+⋅−≡⋅−⋅≡ yaykabyyPayPyyP FUY λν .  (23) 

 The number of positive roots of equation (24) depends on choice of function 
( )yk  and on values { }λν;;;ba . 

Let us sum up the results we obtained.  
Each value y  has a corresponding right line in the plane ( )U F,  passing through 

the coordinate origin (the tangent of angle of inclination of this line is equal to y ). The 
dependence ( )ty  (formula (20)) describes the rotation of this straight line around the 
coordinate origin in a clockwise direction if ( )ty  diminishes and counter-clockwise if 

( )ty  gains in value. The “evolution curve” is described uniquely by formulas (20)–(22), 
if the original values ( )0=tU  ( )0=tF  and parameters { }λν ;;;ba  are assigned.  

The factors accounting for the external look of the “evolution curve”: 

1) The zeros of function ( ) ( ) ( ) ( ) yaykabyyPY ⋅−+⋅−≡ λν  determine the 
system’s “area of development”. The number of “conditions” fitting a single 

“potential”, that is, the value 
F

U
y = , will increase if we have ( ) 0>yPY  and 

will decrease if we have ( ) 0<yPY . 

2) The function ( ) ( ) 1−⋅≡ ykbyPF  relator (sign of value of this function) 
prescribes if the system “potential” will grow ( ( ) 0>yPF ) or diminish 
( ( ) 0<yPF ). 

3) The function ( ) ( ) λν −⋅≡
y
yk

yPU  relator prescribes if the number of 

“conditions” will grow ( ( ) 0>yPU ) or diminish ( ( ) 0<yPU ). 
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All possible “options of development” of the system thus may be divided into 6 
groups depending on functions ( )yPU ; ( )yPF ; ( )yPY  relator. The classification of 
“options of development” designed on the basis of this division is contained in Table. I.  

Let us introduce the following subsidiary functions (Fig.1-3): 

1) ( )
b

yFF
1= ; 2) ( ) yyFU ⋅

ν
λ= ; 3) ( ) ( )

ν−
⋅λ−

=
aby

ya
yFY . 

1) Let us denote the positive roots of equation ( ) ( )ykyFF =  as ;...; )2()1(
FF yy (there 

is always at least one root) (Fig.1).       (25) 

2)  Let us denote the positive roots of equation ( ) ( )ykyFU =  as ;...; )2()1(
UU yy  (if 

0<ν , then the equation has no roots) (Fig.2).     (26) 

3) Let us denote the positive roots of equation ( ) ( )ykyFY =  as ;...; )2()1(
YY yy  

(Fig.3).          (27) 

;...; )2()1(
FF yy ; ;...; )2()1(

UU yy ; ;...; )2()1(
YY yy  points split the multitude of permissible 

∞<< y0  values into areas corresponding to one of the system’s possible “options of 
development”. The development of the system takes place within one of the “areas of 
development” ( ))1()( ; +i

Y
i

Y yy . The roots ;...; )2()1(
FF yy  and ;...; )2()1(

UU yy  appurtenant to “areas” 

( ))1()( ; +i
Y

i
Y yy  divide in into sub-areas, where which sub-area is characterized by a certain 

function ( )yPF  and ( )yPU  relators, that is, conforming to a specific “option of 
development” of the system. 

The charts 4-6 illustrate the described regularities using a concrete example. 

III. External impacts as the reason of change in the system's 
“area of development”. 

The development of the system described by evolution equations does not 
withdraw the system beyond the “area of development” in which the system was at the 
original moment of time. Let us consider the transition of the system from one “area of 
development” to the other. Such transition is possible if the value y  changes in discrete 
steps either for account of increase in number of “conditions” or the abrupt decrease of 
the system “potential”. In both cases the system is affected by the “external” impact 
resulting in the change of “area of development” of the system. The new “area” is 
compliant with the new “type of evolution” and the new limit value y . One may 
suppose that the change of “area of development” is one of the methods of withdrawing 
the system from crisis.  

For example, the crisis in company activities is overcome by: 1) creation of 
additional “conditions” of development (loans, credit, deferral of payments, etc.), 2) 
reduction of system “potential” (firing the workers, cut in volume of production, sale of 
some property, etc.).  

We may denote the shift of the system from “area” iΩ  to  “area” kΩ  
( ki Ω→Ω ) “antirecessionary” if the following conditions are met: 
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1) The final “option of development” in the new “area” kΩ  is characterized by 

the growth of values of “potential” and “conditions” (↑↑↑  or ↓↑↑ );  (28) 

2) ( ) ( )ik yy Ω>Ω ∞+∞+ .       (29) 

Let us consider the issue of the extent of external impact on the system. Let U∆  
and F∆  be absolute increments for the values U  and F  that are necessary for 
transition to the new “area of development”. Let 0U  and 0F  be the values of U  and F  
prior to the transition, iΩ  being the original “area of development”, kΩ  being the “area 
of development” of the system after the shift. Let us consider the two ways of transition: 
1) 0=∆U  è 2) 0=∆F . 

Let us consider for example the case ↑↑↑  represented in Fig.7. Then +Ω≡Ω kk . 
1) In the first way of transition the increment F∆  necessary for the shift to the 

new “area” is set by the inequation: 
( )ky

U
FF

Ω
−>∆

∞−

0
0 .    (30) 

2) In the second case ( 0=∆F ) the follow inequation must hold true: 
( ) 00 UyFU k −Ω⋅>∆ ∞− .        (31)  

If the increment of the number of “conditions” is limited by some value 
( ) 00 UyFU k −Ω⋅<δ ∞− , then, to have the transition, it is necessary to decrease the 

“potential” by value 
( )ky

UU
FF

Ω
+−>∆

∞−

δ0
0 .      (32) 

IV. Classification of systems on the basis of its “evolution 
properties”. 

Let us arrange the roots of equations (25)-(27) ( ;...; )2()1(
FF yy ; ;...; )2()1(

UU yy ; 

;...; )2()1(
YY yy ) in ascending order and number them. Let us denote as ( )

( )k
iAy , where 

( ) { }F;U;YiA = , 321 ,,i = , and the upper index is the new root number. Each system is 

characterized by certain division of set 0>y  into subsets ( )
( )

( )
( )m

nA
k

iA yyy << . Each such 
subset conforms to a certain “option of development”.  

Then sequence of “options of development” characterizes the “evolution 
properties” of a system. 

The systems with similar “evolution properties” will be called one-type systems. 
Each type of systems conforms to a certain method of decomposition of set 0>y  into 

subsets ( )
( )

( )
( )m

nA
k

iA yyy << .  

To describe the method of decomposition it is sufficient to list the “options of 
development” of the system with ascending y .  

For example, the case pictured in Fig.7 is described by the following set of 
“options”: ↑↓↓Ξ ; ↑↑↓Ξ ; ↑↑↑Ξ ; ↓↑↑Ξ ; ↓↓↑Ξ ; ↓↓↓Ξ ; ↑↓↓Ξ . 
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In general each system type has a corresponding ordered set of “options”. As far 
as in the area ( )

( )10 nAyy <<  the “potential” diminishes, only ↑↑↓Ξ ; ↑↓↓Ξ ; ↓↓↓Ξ  
“options” are possible in this “area of development”. 

Let us choose of all ordered sets composed of 6 possible “options” ( ↑↑↑Ξ ; 

↑↑↓Ξ ; ↑↓↓Ξ ; ↓↓↑Ξ ; ↓↓↓Ξ ; ↓↑↑Ξ ) those corresponding to the “evolution equations”. 
It is not difficulty to see, that all the possible 6 “options of development” can be 

deduced from 3 basic “options”: ↑↑↑Ξ , ↑↑↓Ξ , ↑↓↓Ξ  by time inversion operation. Let us 

introduce the following designations for the basic “options”: ↑↑↑Ξ≡3 , ↑↑↓Ξ≡2 , 

↑↓↓Ξ≡1 . Let us designate the operation of time inversion by upper line Ξ . The 

following relations take place: ↑↑↑↓↓↓ Ξ=Ξ≡3 ; ↑↑↓↓↓↑ Ξ=Ξ≡2 ; ↑↓↓↓↑↑ Ξ=Ξ≡1 . 

Let us consider the simplest case: 
1) We shall consider that function ( )yk  is convex in the area of increment (if 

( ) 0>′ yk , then ( ) 0<′′ yk ) and function ( )yk  has only one maximum point. (*) 
2) Let all the roots of equations ( ) ( )ykyFF = , ( ) ( )ykyFU =  and ( ) ( )ykyFY =  

be different and the functions ( )yFY , ( )yFU  have no points of contact with function 
( )yk  (only points of intersection are observed).     (**) 

Having these assumptions is not difficult to list all types of systems having one 
and two “areas of development”. Let us consider the following alternatives: 

1.1) Equation ( ) ( )ykyFF =  has two roots ( m
b

>
1

). There are three areas of 

term-constancy of function ( )tF&  conforming to the “options of development”: ↓Ξ ** ; 

↑Ξ ** ; ↓Ξ ** , (Fig.1); 

1.2) Equation ( ) ( )ykyFF =  has one root ( m
b

<
1

). There are two areas of term-

constancy of function ( )tF&  conforming to the “options of development”: ↓Ξ ** ; ↑Ξ **  
(Fig.1); 

2.1) Equation ( ) ( )ykyFU =  has no roots. Function ( )tU  diminishes over the 
whole area 0>y . Consequently, there is only one possibility - **↓Ξ  (Fig.2); 

2.2) Equation ( ) ( )ykyFU =  has one root. The sequence of “options of 
development” is the following: **↑Ξ , **↓Ξ  (Fig.2); 

3.1) Equation ( ) ( )ykyFY =  has no roots. Function ( )tY  diminishes over the 
whole area 0>y . There is only one “options of development” - **↓Ξ  (Fig.3); 

3.2) Equation ( ) ( )ykyFY =  has at least one root (Fig.3). 

Let us consider the follow four possibilities: (1.1 and  2.1), (1.1 and 2.2), (1.2 
and  2.1), (1.2 and 2.2): 

(1.1 and  2.1) ↓↓Ξ* ; ↓↓↑Ξ ; ↓↓Ξ* ,    (À11) 
(1.1 and 2.2) Three options are possible: 

à) ↑↑↓Ξ ; ↓↓Ξ* ; ↓↓↑Ξ ; ↓↓Ξ* ,   (À12à) 
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b) ↑↑↓Ξ ; ↑↑Ξ* ; ↓↓↑Ξ ; ↓↓Ξ* ,   (À12b) 

ñ) ↑↑↓Ξ ; ↑↑Ξ* ; ↑↑↓Ξ ; ↓↓Ξ* ,   (À12c) 

(1.2 and 2.1) ↓↓Ξ* ; ↓↓↑Ξ ,     (À21) 
(1.2 and 2.2) Two options are possible: 
 à) ↑↑↓Ξ ; ↓↓Ξ* ; ↓↓↑Ξ ,    (À22à) 

 b) ↑↑↓Ξ ; ↑↑Ξ* ; ↓↓↑Ξ ,    (À22b) 

1. Let equation ( ) ( )ykyFY =  has no roots. Then there is only one “area of 
development”. Only cases (À11), (À21) are possible: 

À110. 3;2;3 ( ↓↓↓Ξ ; ↓↓↑Ξ ; ↓↓↓Ξ ); 
À210. 3;2 ( ↓↓↓Ξ ; ↓↓↑Ξ ); 
2. Let equation ( ) ( )ykyFY =  has one root. In this case there are two “areas of 

development”. Function ( )ty  increases into the first “area” but it decreases into the 
second “area”. Only seven types of systems are possible: 

A111. 1;3;2;3 ( ↑↓↓Ξ ; ↓↓↓Ξ ; ↓↓↑Ξ ; ↓↓↓Ξ ); 
A12a.2; 1;3;2;3; 
A12b. 2; 3;1;2;3; 
A12c. 2; 3; 2; 1;3; 
A21 1;3;2; 
A22a. 2; 1;3;2; 
A22b. 2; 3;1;2; 
So all systems (with properties (*) and (**)) having one “area of development” 

are divided into 2 types, while the systems with two “areas of development” are divided 
into 7 types (Fig. 8.1 – 8.9).  

Classification of systems having other number of “areas of development” can be 
considered analogously. 

V. The systems comprising several subsystems. 

 So far we have considered particular systems as one whole. But as a rule any 
system is an agglomeration of a number of interacting subsystems. The number of 
subsystems forming the system and the mode of their interaction condition the 
«structure» of the system. 
 Let us consider system comprising several subsystems. Let iF  and iU , 

N,...,,i 21=  be the “potential” and “conditions” of subsystems, F  and U  be the 
“potential” and “conditions” of the composite system.  
 Let us call the systems to be «identical» if they meet the three following 
conditions: 

1) The function ( )F,Uk  for all systems is the same. 
2) The parameters λν,,b,a  of the systems are identical. 
3) The initial conditions for all systems are identical. 

( ( ) ( ) ( )000 21 NF...FF === , ( ) ( ) ( )000 21 NU...UU === ). 
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 The systems meeting conditions 1) and 2) only will be designated as «similar» 
systems. 
 To describe in mathematical terms the operation of integration of several 
«identical» systems in one, let us assume the following: 

 Statement 7. The value of «potential» («conditions») in the system comprising 
several «identical» subsystems is equal to the sum of values of «potentials» 

(«conditions») of these subsystems: ∑
=

=
N

i
iFF

1

, ∑
=

=
N

i
iUU

1

.    (H) 

 The assumption (H) is the simplest and most natural mathematical formula of 
the logical ratio «to consist of …». The assumption (H) is correct only for the 
«identical» systems and, as we can see further, it must be specified in case of «similar 
non-identical» systems. 
 The «evolution equations» express the universal peculiarities of systems 
development. They must be correct for any systems spontaneously arising in nature and 
in the society. Therefore the «evolution equations» must be executed both for the 
system being considered and its components-subsystems. However, due to non-linearity 
of «evolution equations», the «potential» and «conditions» of the composite system can 
be not equal to the sum of respective values of the «subsystems».  
 Let us consider the system comprising two “similar” subsystems. Let 1F , 1U  
and 2F , 2U  are the values of “potential” and “conditions of realization” in subsystems 
and let F , U  are the values of “potential” and “conditions of realization” in the 
composite system: 

 ( )( ) 1111 1 FF,UkbaF ⋅−⋅⋅=& ;       (I) 
 ( ) 11111 UFF,UkU ⋅λ−⋅⋅ν=&  
 
 ( )( ) 2222 1 FF,UkbaF ⋅−⋅⋅=& ;       (II) 
 ( ) 22222 UFF,UkU ⋅λ−⋅⋅ν=& ; 
 
 ( )( ) FF,UKBAF ⋅−⋅⋅= 1& ;       (III) 
 ( ) UFF,UKU ⋅Λ−⋅⋅Γ=&  

where ΛΓ,,B,A  are parameters of composite system and ( )F,UK  is “realization ratio” 
in this system. 

  We shall prove the following: 
  1°. Functions ( )F,UK  and ( )F,Uk  are identical.  
  2°. The parameters ΛΓ,,B,A  of the composite system are equal to the 
respective parameters of λν,,b,a  of the subsystems. 

 The substantiation: 
  1°. Let the «potentials» and «conditions» of the subsystems are equal at the 
initial moment: ( ) ( ) ( )000 21 fFF ==  è ( ) ( ) ( )000 21 uUU == . Then they will be equal 
with any other 0>t : ( ) ( ) ( )tftFtF ≡= 21 , ( ) ( ) ( )tutUtU ≡= 21 .  
 In this case the “similar” systems are «identical», and the assumption (H) holds 
true. In this case both sets of equations (I) and (II) are reduced to the following sets: 
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  ( )( ) ff,ukbaf ⋅−⋅⋅= 1& ,       (33) 
  ( ) uff,uku ⋅λ−⋅⋅ν=& .       (34) 
 With regard for the property of homogeneity (G) of function ( )F,Uk  we may 
reproduce the following chain of equalities:  

 ( ) ( ) ( ) ( ) ( )f,uk
F

f,uk

FF
FF

f,uK
F

f,uK
F

F,UK
F

F
)R()R()R()R()R()R(

=
+

=+==== 21
2122

. (35) 

 Statement 1° follows from (35). 

  ( ) ( )f,ukf,uK = .        (36) 

  2°. Substituting uUUU &&&& ⋅=+= 221  and fFFF &&&& ⋅=+= 221  in (III) and 
keeping (36) in mind we derive: 

  ( )( ) ( )( ) ff,ukBAff,uKBAf ⋅−⋅⋅=⋅−⋅⋅= 1122& ;   (37) 
  ( ) ( ) uff,ukuff,uKu ⋅Λ−⋅⋅Γ=⋅Λ−⋅⋅Γ= 22& .    (38) 

  Comparing (37)-(38) and (33)-(34) we derive the following: 

  aA = , bB = , ν=Γ , λ=Λ .       (39) 

 As far as sets of equations (I)–(III) must hold true for any choice of initial 
conditions, the equalities (36) and (39) are correct as well for the case of «similar» 
«non-identical» systems. Using the induction, this argument may apply as well to the 
situation of arbitrary number of «similar» systems. 

 Finally we come to the following important results: 

 1) The parameters of the system comprising the arbitrary number of «similar» 
subsystems are equal to the corresponding parameters of the subsystems 2) The 
function of «realisation ratio» of such composite system is congruent with the function 
of «realisation ratio» of the subsystems.  

 Let us consider the case of two “similar non-identical” systems. The composite 
system is described by the follow set of equations: 

 ( )( ) FF,UkbaF ⋅−⋅⋅= 1&        (40) 
 ( ) UFF,UkU ⋅λ−⋅⋅ν=&  

 If 21 FFF +=  and 21 UUU += , then the following correlation must hold true: 

 ( ) ( ) ( )22
21

2
11

21

1 F,Uk
FF

F
F,Uk

FF

F
F,Uk ⋅

+
+⋅

+
= .    (41) 

 Let us introduce variables: 
21

21

FF

UU

F
U

y
+
+

=≡ , 
1

1
1 F

U
y ≡ , 

2

2
2 F

U
y ≡ .  (42) 

 Let 12 yy > . Let us introduce the following denotation: 

  α≡
+

=
−
−

21

1

12

2

FF

F

yy

yy
;       (43) 

 It is not difficulty to see that: 
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 α−=
+

=
−
−

1
21

2

12

1

FF

F

yy

yy
;       (44) 

 ( ) 21 1 yyy ⋅α−+⋅α= .       (45) 

 In these designations the correlation (41) is congruent with the condition of 
function ( )F,Uk  linearity: 

 ( )( ) ( ) ( ) ( )2121 11 ykykyyk ⋅α−+⋅α=⋅α−+⋅α .    (46) 

 However function ( )yk  is not the linear function and therefore: 
 21 FFF +≠  and 21 UUU +≠ . 

 Let 1221 FFFF ++=  and 1221 UUUU ++= ,    (47) 
where 12F  and 12U  are the additional items introduced with the purpose to ensure 
compatibility of the three sets of equations: (I), (II) and (40). They may be regarded as 
the terms describing the «interaction» of subsystems within the composite system. It is 
remarkable that the composite system has some additional opportunities of development 
connected with the interaction of its subsystems. The availability of these new 
possibilities of development is expressed mathematically by introduction of additional 
summands: 12F  and 12U . The contribution of these summands in the “potential” 
(“conditions”) value may be interpreted as the impact of the system’s «structure» on its 
“potential” (“conditions”). So let us call them the “structural summands (or “structural 
terms)”. 
  The “structural terms” comply with the following equations: 
 ( ) ( ) ( ) 1212212112 UFyky,y,ySFFU ⋅λ−⋅⋅ν+⋅+⋅ν=& ,   (48) 
 ( ) ( ) ( )( ) 12212112 1 Fybkay,y,ySFFabF ⋅−⋅+⋅+⋅=& ,    (49) 
 ( ) ( ) ( ) ( ) ( )2121 1 ykykyky,y,yS ⋅α−−⋅α−= .    (50) 

 Let us call the expression (50) as S–factor (structural factor). If 012 →− yy , 
then inequation ( ) 021 >y,y,yS  is the condition of convexity of function ( )yk  in point 
y : ( ) 0<′′ yk . Let inequation ( ) 0≠′′ yk  take place in the whole area 21 yyy ≤≤   

(function ( )yk  has no points of inflection). If ( ) 021 >y,y,yS  ( ( ) 021 <y,y,yS ), then 
function ( )yk  is convex (concave) in this area. 
 Let at some moment of time 0t  a new composite system emerge as a result of 
integration of two “similar” systems. Prior to this moment the “interaction” between the 
systems was absent and therefore ( ) 012 =tF  and ( ) 012 =tU  during 0tt ≤ . Due to 
continuity of functions ( )tF12  and ( )tU12  we may neglect the “structural terms” 12F  and 

12U  in the right part of the formulas (48)-(49) when considering the initial stage of 
formation of the new system. For that reason the change of “structural terms” at the first 
stage of formation of composite systems is determined only by the S-factor. Therefore if 
function ( )yk  is convex and 0>ν  then the result of the system integration will be 
represented by growth of “potential” and “conditions”. As can be seem from Fig.1, the 
function ( )yk  is convex only within the limited area of values. Hence an important 
conclusion:  
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 The unification of several systems in one results in the growth of “potential” and 
“conditions” only when the number of “conditions” matching a single “potential” is 
not too small, however, not exceeding some certain value.  

The growth of “potential” of the composite system means that value of 
“potential” depends on the structure of system. This growth is the result of application 
of universal evolution principles to description of evolution of the composite system. 
Existence of the structure means existence organization (order) in the composite system. 
Just organization of simple systems in one composite system transforms disordered set 
of systems into the new system. Consequently unification of several systems in one is 
not formal procedure. The universal principles of evolution can work if only the process 
of unification of some systems in one results in creation of some structure in the 
composite system. Consequently self-organization of the system can be understood as 
the result of existence of two facts: 1) universal principles of evolution, 2) unification of 
some systems in one. Extensive literature devoted to this item exists (see, for example 
survey in paper [1]). 

If we consider particular persons as systems, then one of the principal indicators 
showing the number of “conditions” per one “potential” is the income per capita in a 
family. The field within which the unification of systems results in the growth of 
“potential” may be characterized, using this indicator, as “stably low and medium 
income”. It is well known that people with “low and medium income” are more sociable 
and are more inclined to get together in groups, unions, clubs, parties, etc., while the 
sections of population behind the line of poverty – tramps, beggars – or, on the contrary, 
those having high and super-high income, trend to keep aloof: the first group in their 
slums, the second group in their palaces. Another example is people’s rallying during 
the hard periods of their life: during the crises, wars and natural calamities. And on the 
contrary, they show striving to independence and self-sufficiency in the safe periods of 
prospering and well-being.  

VI. Conclusion.  

The method of description of system dynamics offered here has its advantages 
and disadvantages.  

The advantages include the very possibility of mathematical description of the 
system evolution process as a process of realization of its “potential”. 

Many authors (for example, [9], [3] and etc.) mark the existence of universal 
principles of evolution of systems. We think that laws of evolution described by means 
of terms “potential” and “conditions” are just such universal principles. 

In conclusion we would like to voice some considerations of philosophical 
character. One might think that the suggested approach will not have any practical value 
due to the abstract character of the terms used. One may also have some doubt as to the 
objective existence of the characteristic features underlying this approach. Does the 
substance that we call the “potential” and the “conditions” really exist? Can we attach 
the objective meaning to the logical structure existing only in our imagination? We are 
disposed to treat these questions in the positive manner. The reason is as follows. 
Analyzing the history of development of different systems, we, when trying to give a 
proper account of what is taking place, use the abstract terms, like “system potential”, 
“development crisis”, “progress”, “regress”, etc. Our thinking in this situation proceeds 
within some logical structure , within a certain system of categories by which we 
perceive and learn the existing reality as something comprehensible and sensible. The 
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very fact that we comprehend this way and not the other way, using the selected 
concepts contrary to some other ones, just means that a certain Reality lies behind these 
notions, that there exists some inter-relational structure that may be revealed only at the 
level of such abstract terms. And this Reality is functional, in the sense that all systems 
emerging spontaneously in the natural environment and in the society evolve according 
to the laws inherent in this Reality. We ourselves are the same evolving systems, and 
laws of this Reality are realized through us as well setting the logical structure of the 
way of thinking specific for us. It is for that reason that the description of what is taking 
place in terms of this logical structure is perceived by us as the explanation. 
(Understanding of thinking (and its logical structure) as a result of evolution process is 
contained in work [6]). 

There are some levels of the Reality. The first level is what is accessible to our 
organs of sense. The second level is made accessible to us by using certain appliances. 
The third level is the plane of abstract structures, which we access by way of thinking. 
This third level is as real as the other two. The Reality of the third level exists and 
functions, though lying beyond the zone of our sensual perception. 

Where is the weak point of our approach? This is the absence of methods of 
correlation of abstract terms with the data being registrated. Obviously, such methods 
must exist. We must find the procedur es reducing the information about the system to 
two abstract parameters. However, this is subject for another labor-intensive work 
which yet ahead. 
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